\leftarrow \Box \rightarrow \rightarrow \overline{m} \rightarrow

E. $\,$ $\,$ 重き 重 2990

Combinatorial Nulstellensatz

Yehor Shudrenko Maksym Shvydenko Gabel Theodor Mentor: Kyrylo Muliarchyk

June 15, 2024

Yehor Shudrenko, Maksym Shvydenko, Gabel Theodor Mentor: Kyrylo Muliarchyk

④ → → 三→

₿

 Ω

Basic information

- Let F be a field. Examples of fields are the set $\mathbb R$ of real numbers or the sets \mathbb{F}_p of remainders modulo prime number p.
- If S is a set, then the notation of cardinality of the set is $|S|$. Cardinality is a word used to describe the number of elements in the set. So if $|S| = 3$, S has 3 elements.

イロメ イ押 トイヨ トイヨメ

₿

 Ω

Combinatorial Nullstellensatz

Theorem (Combinatorial Nullstellensatz)

Let $f \in F[x_1, x_2, x_3, \ldots, x_n]$ be a polynomial on n variables with highest degree monomial $ax_1^{t_1}x_2^{t_2}\cdots x_n^{t_n}\neq 0$, in the sense that degree $t_1 + t_2 + \cdots + t_n$ is the largest among nonzero monomials. Let it also be $S_i \subseteq F$, and $|S_i| > t_i$, $\forall i \in \mathbb{N}, 1 \le i \le n$. Then for every S_i exist $s_i \in S_i$, such as $f(s_1, s_2, \ldots, s_n) \neq 0$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

₿

 Ω

Problem 6 IMO 2007

Let *n* be a positive integer. Consider $S = \{(x, y, z) | x, y, z \in \{0, 1, \ldots, n\}, (x, y, z) \neq (0, 0, 0)\}\$ as a set of $(n+1)^3-1$ points in three-dimensional space. Determine the smallest possible number of planes, the union of which contains S but does not include (0, 0, 0).

Answer

The answer is $k = 3n$, where k is the number of planes. The following planes are an example:

- $x = i, i \in \{1, 2, 3, \ldots, n\}$
- $y = i, i \in \{1, 2, 3, ..., n\}$
- \bullet z = i, i \in {1, 2, 3, ..., n}

The union of those planes will include all points of S, but not $(0, 0, 0).$

 $\langle \overline{m} \rangle$ \rightarrow $\langle \overline{m} \rangle$ \rightarrow $\langle \overline{m} \rangle$

重

 Ω

Suppose, on the contrary, that there exist $k < 3n$ planes for which union includes all the points of S. Let the equations of those planes be $a_i x + b_i y + c_i z = d_i, i = 1, ..., k$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

 QQ

重

Suppose, on the contrary, that there exist $k < 3n$ planes for which union includes all the points of S. Let the equations of those planes be $a_i x + b_i y + c_i z = d_i$, $i = 1, ..., k$. Define polynomials P and Q:

$$
P(x, y, z) = \prod_{i=1}^{k} (a_i x + b_i y + c_i z - d_i)
$$

$$
Q(x, y, z) = \prod_{i=1}^{n} (x - i) \prod_{i=1}^{n} (y - i) \prod_{i=1}^{n} (z - i)
$$

 $\langle \overline{m} \rangle$ \rightarrow $\langle \overline{m} \rangle$ \rightarrow $\langle \overline{m} \rangle$

重

 Ω

Yehor Shudrenko, Maksym Shvydenko, Gabel Theodor Mentor: Kyrylo Muliarchyk

$$
P(x, y, z) = \prod_{i=1}^{k} (a_i x + b_i y + c_i z - d_i)
$$

 $P(x, y, z)$ is polynomial of degree k, because $P(x, y, z)$ is product of k polynomials of degree 1. So, the coefficient of $x^n y^n z^n$ will be 0. By assumption, P is zero everywhere in S except for the point $(0, 0, 0)$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

重

 Ω

→ 何 ▶

E.

₿

 Ω

Solution

$$
Q(x, y, z) = \prod_{i=1}^{n} (x - i) \prod_{i=1}^{n} (y - i) \prod_{i=1}^{n} (z - i)
$$

For $Q(x, y, z)$ the coefficient of $x^n y^n z^n$ will be 1. Clearly, $x^n y^n z^n$ is the highest degree monomial. $Q(x, y, z)$ will equal zero at every point of S and will be nonzero at (0, 0, 0).

Consider the polynomial

$$
R(x, y, z) = P(x, y, z) - \frac{P(0, 0, 0)}{Q(0, 0, 0)}Q(x, y, z)
$$

The highest degree monomial of R is $x^n y^n z^n$ with coefficent $-\frac{P(0,0,0)}{O(0,0,0)}$ $\frac{P(0,0,0)}{Q(0,0,0)}$. Thus,

$$
R(a, b, c) = P(a, b, c) - \frac{P(0, 0, 0)}{Q(0, 0, 0)}Q(a, b, c) = 0
$$

for any $a, b, c \in \{0, 1, ..., n\}$. However, this is a contradiction by the Combinatorial Nullstellensatz.

メロメ メ御 メメ きょ メモメ

重

 Ω

<u>Eormulation</u>

Theorem (Cauchy-Davenport)

If A and B are nonempty subsets of \mathbb{Z}_p , where p is prime, then

$|A + B| \geq min(p, |A| + |B| - 1)$

 \mathbb{Z}_p , where p is prime, is a finite field of all the remainders modulo p $A + B = \{z \mid \forall a \in A, \forall b \in B. z = a + b\}$

K ロ > K 個 > K 差 > K 差 > → 差

 Ω

Formulation

Theorem (Cauchy-Davenport)

If A and B are nonempty subsets of \mathbb{Z}_p , where p is prime, then

$$
|A+B|\geq \textit{min}(p,|A|+|B|-1)
$$

 \mathbb{Z}_p , where p is prime, is a finite field of all the remainders modulo p $A + B = \{z \mid \forall a \in A, \forall b \in B. z = a + b\}$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 ▶

 Ω

Formulation

Theorem (Cauchy-Davenport)

If A and B are nonempty subsets of \mathbb{Z}_p , where p is prime, then

$$
|A+B|\geq \textit{min}(p,|A|+|B|-1)
$$

 \mathbb{Z}_p , where p is prime, is a finite field of all the remainders modulo p $A + B = \{z \mid \forall a \in A, \forall b \in B. z = a + b\}$

メロメ メタメ メミメ メミメン 差し

 2990

Yehor Shudrenko, Maksym Shvydenko, Gabel Theodor Mentor: Kyrylo Muliarchyk

1. If $|A| + |B| > p$ then A and B intersect due to the Pigeon Hole Principle. Similarly, $\forall q \in \mathbb{Z}_p$ $q - B$ also intersects with A. Consequently $A + B = \mathbb{Z}_p$ 2. Assume that $|A| + |B| \leq p$. Then $|A| + |B| - 1 \leq p$. Suppose that the result of the theorem is false, then $|A + B| \leq |B| + |A| - 2.$ Then add some elements to $A + B$, constructing a new set $C \subseteq \mathbb{Z}_p$ s.t. $|C| = |A| + |B| - 2$

イロメ イ団メ イモメ イモメー

重

 Ω

1. If $|A| + |B| > p$ then A and B intersect due to the Pigeon Hole Principle. Similarly, $\forall q \in \mathbb{Z}_p$ $q - B$ also intersects with A. Consequently $A + B = \mathbb{Z}_p$ 2. Assume that $|A| + |B| < p$. Then $|A| + |B| - 1 < p$. Suppose that the result of the theorem is false, then $|A + B| \leq |B| + |A| - 2.$ Then add some elements to $A + B$, constructing a new set $C \subseteq \mathbb{Z}_p$ s.t. $|C| = |A| + |B| - 2$

K ロ > K 個 > K ミ > K ミ > → ミ → の Q Q →

Yehor Shudrenko, Maksym Shvydenko, Gabel Theodor Mentor: Kyrylo Muliarchyk

Consider the polynomial

$$
f(x,y)=\prod_{c\in C}(x+y-c)\quad x,y\subseteq \mathbb{Z}_p
$$

メロメ メ御 メメ きょ メモメ

重

 Ω

Then by definition of C $\forall a \in A, b \in B$ $f(a, b) = 0$. $deg(f) = |A| + |B| - 2$ Let us apply the Combinatorial Nullstellensatz to it.

Consider the polynomial

$$
f(x,y)=\prod_{c\in C}(x+y-c)\quad x,y\subseteq \mathbb{Z}_p
$$

メロメ メ御 メメ きょ メモメ

重

 Ω

Then by definition of $C \forall a \in A, b \in B$ $f(a, b) = 0$. $deg(f) = |A| + |B| - 2$ Let us apply the Combinatorial Nullstellensatz to it.

Consider the polynomial

$$
f(x,y)=\prod_{c\in C}(x+y-c)\quad x,y\subseteq \mathbb{Z}_p
$$

メロメ メ御 メメ きょ メモメ

活

 Ω

Then by definition of $C \forall a \in A, b \in B$ $f(a, b) = 0$. $deg(f) = |A| + |B| - 2$

Let us apply the Combinatorial Nullstellensatz to it.

Consider the polynomial

$$
f(x,y)=\prod_{c\in C}(x+y-c)\quad x,y\subseteq \mathbb{Z}_p
$$

メロメ メ御 メメ きょ メモメ

Ε

 Ω

Then by definition of $C \forall a \in A, b \in B$ $f(a, b) = 0$. $deg(f) = |A| + |B| - 2$ Let us apply the Combinatorial Nullstellensatz to it.

Put $t_1 = |A| - 1$, $t_2 = |B| - 1$.

Note that

1)
$$
t_1 + t_2 = |A| + |B| - 2 = \deg(f)
$$

2) The coefficient of $x^{t_1}y^{t_2}$ is $\binom{|A|+|B|-2}{|A|-1}$ \neq p , as $|A|+|B|-2 < p$ by the claim.

Applying the Combinatorial Nullstellensatz to $f(x, y)$ and the sets A, B in the field \mathbb{Z}_p we get $\exists a' \in A, b' \in B$ s.t. $f(a', b') \neq 0$, a contradiction.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

₿

 209

Put $t_1 = |A| - 1$, $t_2 = |B| - 1$. Note that 1) $t_1 + t_2 = |A| + |B| - 2 = \deg(f)$

2) The coefficient of $x^{t_1}y^{t_2}$ is $\binom{|A|+|B|-2}{|A|-1}$ \neq p , as $|A|+|B|-2 < p$ by the claim.

Applying the Combinatorial Nullstellensatz to $f(x, y)$ and the sets A, B in the field \mathbb{Z}_p we get $\exists a' \in A, b' \in B$ s.t. $f(a', b') \neq 0$, a contradiction.

K 御 と K 君 と K 君 と

重

 209

Put $t_1 = |A| - 1$, $t_2 = |B| - 1$. Note that 1) $t_1 + t_2 = |A| + |B| - 2 = \deg(f)$ 2) The coefficient of $x^{t_1}y^{t_2}$ is $\binom{|A|+|B|-2}{|A|-1}$ \neq p , as $|A|+|B|-2 < p$ by the claim.

Applying the Combinatorial Nullstellensatz to $f(x, y)$ and the sets A, B in the field \mathbb{Z}_p we get $\exists a' \in A, b' \in B$ s.t. $f(a', b') \neq 0$, a contradiction.

 \sqrt{m}) \sqrt{m}) \sqrt{m})

重

 Ω

Put $t_1 = |A| - 1$, $t_2 = |B| - 1$. Note that 1) $t_1 + t_2 = |A| + |B| - 2 = \deg(f)$ 2) The coefficient of $x^{t_1}y^{t_2}$ is $\binom{|A|+|B|-2}{|A|-1}$ \neq p , as $|A|+|B|-2 < p$ by the claim. Applying the Combinatorial Nullstellensatz to $f(x, y)$ and the sets

 A, B in the field \mathbb{Z}_p we get $\exists a' \in A, b' \in B$ s.t. $f(a', b') \neq 0$, a contradiction.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

重

 Ω

メロメ メ御 メメ きょ メモメ

∍

 209

Chevalley theorem

Theorem (Chevalley theorem)

Let p be prime and polynomials $P_1(x_1,...,x_n)$, $P_2(x_1,...,x_n)$, ..., $P_m(x_1,\ldots,x_n)\in\mathbb{Z}_p[X_1,X_2,\ldots,X_n]$ satisfy $\sum_{i=1}^m\text{deg}(P_i)< n$. If the polynomials P_i have a common zero (c_1, c_2, \ldots, c_n) , they have another common zero.

Suppose that (c_1, \ldots, c_n) is the unique common root. Define $f(x_1, x_2, ..., x_n) = \prod_{i=1}^{m} (1 - P_i^{p-1})$ \sum_{i}^{p-1}) – $\delta \prod_{i=1}^{n} \prod_{j=1}^{n} (x_j - c)$ $j=1$ c $\in \mathbb{Z}$,c \neq cj where we choose δ such that $f(c_1, \ldots, c_n) = 0$.

 $\mathcal{A} \subseteq \mathcal{F} \rightarrow \mathcal{A} \oplus \mathcal{F} \rightarrow \mathcal{A} \oplus \mathcal{F}$

重

 Ω

Chevalley theorem

Theorem (Chevalley theorem)

Let p be prime and polynomials $P_1(x_1,...,x_n)$, $P_2(x_1,...,x_n)$, ..., $P_m(x_1,\ldots,x_n)\in\mathbb{Z}_p[X_1,X_2,\ldots,X_n]$ satisfy $\sum_{i=1}^m\text{deg}(P_i)< n$. If the polynomials P_i have a common zero (c_1, c_2, \ldots, c_n) , they have another common zero.

Proof

Suppose that (c_1, \ldots, c_n) is the unique common root. Define $f(x_1, x_2, ..., x_n) = \prod_{i=1}^{m} (1 - P_i^{p-1})$ $i-1$ \int_{i}^{p-1}) – $\delta \prod_{r=1}^{n}$ \prod $j=1$ c $\in \mathbb{Z}$,c \neq c j $(x_i - c)$ where we choose δ such that $f(c_1, \ldots, c_n) = 0$.

メロメ メ御 メメ きょく モメー

■

 299

Chevalley theorem

Proof

Observe that
$$
\delta \neq 0
$$
 : $\prod_{i=1}^{m} (1 - P_i(c_1, ..., c_n)^{p-1}) = 1$.
\nFurthermore, if $(x_1, ..., x_n) \neq (c_1, ..., c_n)$,
\n $\prod_{i=1}^{m} (1 - P_i^{p-1}) = 0$ (by Fermat's Little theorem)
\nand $-\delta \prod_{j=1}^{n} \prod_{c \in \mathbb{Z}, c \neq c_j} (x_j - c) = 0 \implies f(x_1, ..., x_n) = 0 \forall x_i \in \mathbb{Z}_p$

Yehor Shudrenko, Maksym Shvydenko, Gabel Theodor Mentor: Kyrylo Muliarchyk

メロメ メ御 メメ きょく モメー

■

 299

Chevalley theorem

Proof

Observe that
$$
\delta \neq 0
$$
 : $\prod_{i=1}^{m} (1 - P_i(c_1, ..., c_n)^{p-1}) = 1$.
\nFurthermore, if $(x_1, ..., x_n) \neq (c_1, ..., c_n)$,
\n $\prod_{i=1}^{m} (1 - P_i^{p-1}) = 0$ (by Fermat's Little theorem)
\nand $-\delta \prod_{j=1}^{n} \prod_{c \in \mathbb{Z}, c \neq c_j} (x_j - c) = 0 \implies f(x_1, ..., x_n) = 0 \forall x_i \in \mathbb{Z}_p$

Yehor Shudrenko, Maksym Shvydenko, Gabel Theodor Mentor: Kyrylo Muliarchyk

メロメ メ御 メメ きょく きょう

重

 299

Chevalley theorem

Proof

Observe that
$$
\delta \neq 0
$$
 : $\prod_{i=1}^{m} (1 - P_i(c_1, ..., c_n)^{p-1}) = 1$.
\nFurthermore, if $(x_1, ..., x_n) \neq (c_1, ..., c_n)$,
\n $\prod_{i=1}^{m} (1 - P_i^{p-1}) = 0$ (by Fermat's Little theorem)
\nand $-\delta \prod_{j=1}^{n} \prod_{c \in \mathbb{Z}, c \neq c_j} (x_j - c) = 0 \implies f(x_1, ..., x_n) = 0 \forall x_i \in \mathbb{Z}_p$

Yehor Shudrenko, Maksym Shvydenko, Gabel Theodor Mentor: Kyrylo Muliarchyk

Chevalley theorem

Proof.

$$
\deg(f) = \deg\left(-\delta \prod_{j=1}^n \prod_{c \in \mathbb{Z}, c \neq c_j} (x_j - c)\right) = \deg\left(-\delta \prod_{i=1}^n x_i^{p-1}\right)
$$

$$
= (p-1)n > (p-1) \sum_{i=1}^m \deg(P_i),
$$

as x_1^{p-1} $x_1^{p-1}x_2^{p-1}$ z_2^{p-1} ... x_n^{p-1} is a highest degree monomial. Therefore, by Combinatorial Nullstellensatz theorem

 $(\exists (x_1, \ldots, x_n) \in \mathbb{Z}_p)[f(x_1, \ldots, x_n) \neq 0]$

Yehor Shudrenko, Maksym Shvydenko, Gabel Theodor Mentor: Kyrylo Muliarchyk
Carlia III III III III [Combinatorial Nulstellensatz](#page-0-0)

Chevalley theorem

Proof.

$$
\deg(f) = \deg\left(-\delta \prod_{j=1}^n \prod_{c \in \mathbb{Z}, c \neq c_j} (x_j - c)\right) = \deg\left(-\delta \prod_{i=1}^n x_i^{p-1}\right)
$$

$$
= (p-1)n > (p-1) \sum_{i=1}^m \deg(P_i),
$$

as x_1^{p-1} $x_1^{p-1}x_2^{p-1}$ z_2^{p-1} ... x_n^{p-1} is a highest degree monomial. Therefore, by Combinatorial Nullstellensatz theorem

$$
(\exists (x_1,\ldots,x_n)\in\mathbb{Z}_p)[f(x_1,\ldots,x_n)\neq 0]
$$

[Exercise](#page-1-0) [Cauchy-Davenport Theorem](#page-10-0) [Chevalley theorem](#page-23-0) [Questions](#page-30-0)

 \leftarrow \Box \rightarrow \rightarrow \overline{m} \rightarrow

∍

 2990

₿

Questions

Thanks for your attention Do you have any questions?

Yehor Shudrenko, Maksym Shvydenko, Gabel Theodor Mentor: Kyrylo Muliarchyk